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ABSTRACT: Observations from uncrewed surface vehicles (saildrones) in the Bering, Chukchi, and Beaufort Seas during
June–September 2019 were used to evaluate initial conditions and forecasts with lead times up to 10 days produced by eight
operational numerical weather prediction centers. Prediction error behaviors in pressure and wind are found to be different
from those in temperature and humidity. For example, errors in surface pressure were small in short-range (,6 days) forecasts,
but they grew rapidly with increasing lead time beyond 6 days. Non-weighted multimodel means outperformed all individual
models approaching a 10-day forecast lead time. In contrast, errors in surface air temperature and relative humidity could be
large in initial conditions and remained large through 10-day forecasts without much growth, and non-weighted multimodel
means did not outperform all individual models. These results following the tracks of the mobile platforms are consistent with
those at a fixed location. Large errors in initial condition of sea surface temperature (SST) resulted in part from the unusual
Arctic surface warming in 2019 not captured by data assimilation systems used for model initialization. These errors in SST
led to large initial and prediction errors in surface air temperature. Our results suggest that improving predictions of sur-
face conditions over the Arctic Ocean requires enhanced in situ observations and better data assimilation capability for
more accurate initial conditions as well as better model physics. Numerical predictions of Arctic atmospheric conditions
may continue to suffer from large errors if they do not fully capture the large SST anomalies related to Arctic warming.

KEYWORDS: Arctic; Atmosphere-ocean interaction; Forecast verification/skill

1. Introduction

Environmental predictions of the Arctic face new challenges
as sea ice diminishes faster than anticipated (Yadav et al.
2020), exposing a vast area of the ocean that was previously
covered by sea ice to the atmosphere in summer. This has
resulted in unprecedented ocean surface warming (Steele et al.
2008), which led to impacts on the marine and terrestrial eco-
systems (Lewis et al. 2020; Bhatt et al. 2017) and changes in
air–sea gas exchange (DeGrandpre et al. 2020). In the long
term, whether and when the summer Arctic will be ice-free

are critical climate issues with tremendous global impacts
(Wang and Overland 2009; Vihma 2014). In the shorter term,
distributions of Arctic sea ice in the coming week, month, sea-
son, and year are vital information for coastal communities,
management and conservation of marine resources, operation
of shipping, fishing and energy industries in the Arctic, and
weather forecasting of midlatitudes. Knowledge of interannual
fluctuations in sea ice coverage is also needed to understand
how consequential variability in surface energy fluxes may
affect the Arctic atmosphere–ocean–sea ice system (Danielson
et al. 2020).

Arctic prediction faces several challenges (Jung et al. 2016),
rooted mainly in two sources. One is the lack of in situ observa-
tions for initial and boundary conditions and forecast validation
(Smith et al. 2019). In the Arctic, it is extremely difficult to take
operational in situ observations because of annual shifts in sea
ice coverage. Increasing amounts of observations have been
taken by research field experiments in the Arctic. They are,
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however, still spatially limited, and are rarely made available in a
timely fashion to prediction centers. While satellite observing
technology has rapidly progressed, many critical variables for
prediction (e.g., sea ice thickness, conditions at the air–sea inter-
face, upper ocean properties) are not reliably retrieved from
spaceborne remote sensing with desirable accuracy or validated
by an adequate suite of in situ observations (Castro et al. 2016;
Sallila et al. 2019; Sedlar and Tjernstrom 2019; Naakka et al.
2019; Banzon et al. 2020). The second source of the challenges
faced by Arctic prediction is inadequate model representations
of key physical processes for the Arctic energy budget, notably
ice physics (e.g., Hunke et al. 2011), ice–ocean–atmosphere inter-
action (e.g., Boutin et al. 2020), and cloud properties (e.g., Sedlar
et al. 2020), which substantially affect solar and IR radiation. This
second source is closely related to the first one because improving
prediction models inevitably depends on new knowledge on the
key processes that must be gained from observations.

Predictions of Arctic large-scale circulation patterns have
been verified by comparing against the 500-hPa geopotential
height from model (re)analysis products (Bauer et al. 2016;
Jung and Matsueda 2016). For verification of Arctic predictions
at the surface, the usage of global reanalysis products as surro-
gates to observations must be practiced with extreme caution
owing to a lack of in situ observations to constrain data assimila-
tion. Large biases exist in reanalysis products when compared
to limited in situ observations (Francis 2002; Liu and Key 2016).
Prediction errors in the 2-m air temperature compared with sta-
tion observations are larger than compared with a reanalysis
product (Bauer et al. 2016). Large discrepancies exist between
reanalysis products and in situ observations at the surface and
in the boundary layer in the Arctic (Beesley et al. 2000; Lüpkes
et al. 2010; Lindsay et al. 2014). For 2-m temperature, different
reanalysis products can differ by 10 K in their mean errors
against observations at synoptic stations over land in the Arctic
(Hersbach et al. 2020).

Key issues of advancing Arctic prediction systems include
expanding in situ observations and wisely using existing observa-
tions, however sparse, to verify predictions (Jung et al. 2016).
The World Meteorological Organization (WMO) Polar Predic-
tion Project (Gordon et al. 2014), especially its key component
Year of Polar Prediction (Goessling et al. 2016), mobilized inter-
national efforts to develop new capabilities of Arctic prediction,
including observations, model development, prediction verifica-
tion, and user engagement. In the Arctic, the impact of in situ
observations on prediction is comparable to that of satellite data,
even though the amount of in situ observations available to pre-
diction systems is no more than 10% of satellite observations
(Lawrence et al. 2019). This implies that the impact of in situ
observations is much greater than satellite observations per data
sample. Most in situ observations that have been used in model
verification are from weather stations over land (Atkinson and
Gajewski 2002; Bauer et al. 2016; Lawrence et al. 2019; Køltzow
et al. 2019; Naakka et al. 2019) with fewer obtained from ships
(Naakka et al. 2019; Lüpkes et al. 2010; Tjernström et al. 2021)
and drifting ice camps (Lindsay 1998).

New opportunities of observations from uncrewed platforms
have emerged to fill in the blind spots of conventional observing
networks. A case in point is the Arctic Ocean where

observations are extremely difficult to make because of the sea-
sonal migration and erratic behavior of sea ice. Recently, a new
type of uncrewed surface vehicles (USVs), saildrones, has been
developed and deployed in the Arctic Ocean that can be used
to validate numerical weather prediction (NWP) products.
However, using USV observations to validate NWP products
has never been done in the Arctic. Thus, its feasibility for this
purpose needs to be tested and evaluated.

This article describes a study that uses in situ observations
from saildrones to validate NWP products near the ocean surface
in the Arctic for June–September 2019. Our first objective is to
test the feasibility of using observations from saildrones to vali-
date NWP products and to develop a suitable methodology that
can be broadly applied to observations from other types of
USVs. Two major difficulties are introduced by the mobility of
observing platforms when their observations are used to validate
NWP products. Even though comparisons between observations
from a moving platform and gridded NWP products can be
made at the same location at a given forecast time through inter-
polation, the model error growth between two forecast times
does not carry the same meaning as at a fixed location because of
the spatial variability over a distance covered by the moving plat-
form during this time. We will discuss the extent to which this
may affect the measured prediction error growth. In addition,
observed standard deviations can be used as a benchmark to
compare model errors in different variables. Standard deviations
calculated using observations from a moving platform would,
however, include variability in both time and space. We will dis-
cuss whether such observed standard deviations are still useful to
comparisons of errors in different variables.

Our second objective is to interpret results from comparisons
of saildrone observations and NWP products. Pertinent issues
include the representativeness of the results from a limited time
(summer 2019) and geographic domain (the Bering, Chukchi,
and Beaufort Seas) of the observations, different behaviors
among surface pressure, wind, temperature and humidity,
connections between errors in surface air temperature and sea
surface temperature, and the possible roles of uncertainties
associated with initial conditions in forecast errors.

In this first attempt at validating NWP products using USV
observations, we use a subset of multiyear saildrone deploy-
ments as well as deterministic model forecasts. Recent studies
have suggested that the intrinsic limit of atmospheric predictabil-
ity in the Arctic is approximately two to three weeks (Judt
2020). Realizing that no current model can reach even close to
this predictability limit with its deterministic forecast, we con-
fined our forecast validation to a lead time of 10 days. Once we
ascertain the feasibility of using USV observations to validate
NWP products, we plan to expand this study to include observa-
tions from saildrone deployments in other years and in other
regions, and to use ensemble forecasts to cover the full range of
potential atmospheric predictability.

The saildrone observations are introduced in section 2 along
with descriptions of the NWP products compared against the
observations and the methodology adopted. Results from such
comparisons are presented in section 3, and their possible inter-
pretations are provided in section 4. A summary and concluding
remarks are given in section 5.
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2. Observations, NWP products, and method

Saildrones are remotely piloted USVs, powered by wind
and solar energy. They can be equipped with numerous sen-
sors to measure physical, chemical, and biological variables
(Cokelet et al. 2015; Meinig et al. 2015, 2019). They have been
deployed in different climate zones of the world oceans, such
as the Bering, Chukchi and Beaufort Seas, the Southern
Ocean, the tropical Pacific and Atlantic, and the west coast of
North America. They have served a variety of purposes,
including surveys of fish and marine mammals (Mordy et al.
2017; Chu et al. 2019; De Robertis et al. 2019; Kuhn et al. 2020),
measurement of surface fluxes of energy (Zhang et al. 2019) and
carbon dioxide (Sutton et al. 2021), and evaluation of satellite
data (Vazquez-Cuervo et al. 2019; Gentemann et al. 2020; Scott
et al. 2020).

The observations used in this study are from a joint project
conducted by NOAA Pacific Marine Environment Laboratory
(PMEL) and the NASA Physical Oceanography program’s Mul-
tisensor Improved Sea Surface Temperatures (MISST) team.
Four saildrones were launched from Unalaska, Alaska, on 15
May. Their observations covered the Bering Sea, Chukchi Sea,
and Beaufort Seas (Fig. 1). Three saildrones (sd-1034, 1036 and
1037) returned to Unalaska, Alaska, on 13 October. One sail-
drone (sd-1035) was recovered at Utqiaġvik, Alaska, on 4 Octo-
ber. The total number of days of observations was 147 (with
days of no data toward the end), and the total distance traveled
by all saildrones was over 65000 km. The most northern point
of the observations was 75.48N (August 17). In this study, the
saildrone observations from 1 June to 30 September were used.

The objectives of the saildrone deployment were to (i) explore
the feasibility of using saildrone observations to evaluate NWP
products, (ii) improve the calibration of satellite-based meas-
urements of SST in polar waters, (iii) observe along four
Distributed Biological Observatory lines (Grebmeier et al.
2019), (iv) perform cross-calibration tests for sensors of sur-
face CO2 partial pressure against instrumentation aboard the
USCGCHealy, (v) survey ocean currents of Hanna Shoal, the
Chukchi Shelf Current and the Alaskan Coastal Current (Li
et al. 2019), and (vi) estimate surface energy fluxes of the Arctic
Ocean and compare them with those based on other observa-
tions. This study covers only the first objective.

In this study, we used saildrone observations of surface baro-
metric pressure (p) measured at 0.2 m above the sea surface
(Vaisala PTB210 barometers), air temperature (T) and relative
humidity (RH) at 2.3 m (Rototronic HC2-S3 probes), wind
speed and direction at 5.2 m (Gill 1590-PK-020 anemometers),
and SST at 20.5 m (Sea-Bird SBE37 MicroCAT). The sam-
pling frequencies are 10 Hz for wind and 1 Hz for the other
variables. The data used to compare with model predictions
are hourly, averaged over six 1-min means at the start of every
10-min interval within the hour. Camera images were also avail-
able in the horizontal directions and downward from the mast.
Detailed information on the sensors and data quality can be
found in Meinig et al. (2015), Cokelet et al. (2015), Zhang et al.
(2019), and Gentemann et al. (2020).

The accuracy of the saildrone measurement has been
assessed by comparing observations of a saildrone and a

moored buoy in the tropical eastern tropical Pacific within
12 km from each other for 315 h (Zhang et al. 2019). The
buoy observations were treated as a standard. The root-
mean-square (RMS) and mean differences between the two
are listed in Table 1 (second column from the left).

During the 2019 deployment, cross comparisons were made
between the saildrones when they were sailing side by side
(within 7 km) for seven hours at the beginning of the deploy-
ment on 17 May and for eight hours at the end on 6 October.
The mean 95% confidence limits that resulted from these
comparisons are also listed in Table 1 (third column from the
left). There is no obvious reason to suspect that the measure-
ment accuracy of the saildrones in the Arctic should be differ-
ent from that in the tropics, except when water freezes on the
sensors, which happened only a few times during the deploy-
ment. Data during these times were excluded from this study.
The confidence limits derived from the Arctic comparison can
be considered upper bounds of measurement uncertainties if
they are larger than those based on the saildrone–buoy com-
parison. Both are much smaller than errors in the predictions
as demonstrated in section 3.

Observations made by the saildrones during the 2019 Arctic
deployment can be categorized into three scenarios based on
camera images: open water without detectable sea ice (no sea
ice in any image), which comprises the majority (96%) of the
total observation samples; open water with sea ice detected at
distances (sea ice in sideward images but not downward),
about 2% of the total samples; and saildrone in contact with

FIG. 1. Tracks of saildrones (solid lines) and contours of 15% sea
ice concentration edges (dotted lines) for 1 Jun (white), 1 Jul (pink),
and 1 Sep (magenta). Colors along the saildrone tracks indicate
months. Background color is sea ice concentration on 1 Aug. Ice
information is based on the AMSR-2 sea ice concentration product
of the EUMETSAT Ocean and Sea Ice Satellite Application Facility
(OSI SAF, www.osi-saf.org).
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ice (ice in downward images), about 2% of the total samples.
Most of the observations near sea ice were in June and
August (Chiodi et al. 2021). The main results from this study
are not affected by the observed ice scenarios when the full
record of the data is used.

The NOAA daily Optimum Interpolation Sea Surface
Temperature version 2.1, hereafter briefly as OISST v2.1
(Banzon et al. 2020), was used to provide climatology and

anomalies in SST over the saildrone operation area and
period.

Forecasts used in this study are from eight prediction cen-
ters (Table 2). Some of the forecasts are archived by The
Observing System Research and Predictability Experiment
(THORPEX) Interactive Grand Global Ensemble (TIGGE,
Swinbank et al. 2016); others are provided directly by the
model centers. The grid spacing of all data used in this study

TABLE 1. Measurement uncertainties.

Variable

RMS (mean) difference
between a saildrone and buoy
in the eastern tropical Pacific

95% confidence limit from
Arctic cross comparisons,

beginning and end of mission
Manufacturer’s accuracy;

stability

p (hPa) } 60.21 and 60.36 60.30; 0.10 yr21

RH (%) 2.3 (21.2) 61.34 and 64.17 60.8 at 238C; 1.0 yr21

T (8C) 0.31 (20.02) 60.145 and 60.089 60.1 at 238C; 0.1 yr21

Wind speed (m s21)a 0.63 (20.28) 60.576 and 60.544 60.18 up to 45 m s21

Wind direction (8)a 16.0 (23.9) 66.11 and 66.51 62 up to 45 m s21

SST (8C) 0.047 (0.011) 60.051 and 60.022 60.002; 0.0024 yr
a Stability information is not available from instrument manuals.

TABLE 2. Prediction models.

Model ID
Model institute (country),

model name

Grid spacing and
No. of vertical
levels of the

atmospheric model

Atmosphere–
ocean

coupling

Assimilated
saildrone

observations Reference(s)

CMA Chinese Meteorological
Administration (China),
Global and Regional
Assimilation and Prediction
System

50 km, 31 levels No None Shen et al. (2020)

CPTEC Center for Weather Forecasting
and Climate Studies (Brazil),
Brazilian Atmospheric
Model

104 km, 28 levels No None Figueroa et al. (2016)

ECCC Environment and Climate
Change Canada (Canada)

39 km, 40 levels Yes SST, p, T CMC (2019)

ECMWF European Centre for Medium-
Range Weather Forecasts
(International), Integrated
Forecasting System

16 km, 91 levels Yes SST,a p ECMWF (2018);
ECMWF (2019)

JMA Japanese Meteorological
Administration (Japan),
Global Spectral Model

20 km, 60 levels No None Yonehara et al. (2018)

KMA Korean Meteorological
Administration (Korea),
United Model

32 km, 70 levels No None Schellekens at al.
(2011)

Navy-ESPC Naval Research Laboratory,
Monterey (United States),
Global Prediction
Systems–Earth System
Prediction Capability

37 km, 60 levels Yes SST, p, T Barton et al. (2020)

NCEP National Centers for
Environmental Prediction
(United States), Global
Forecast System, version 15

12 km before and 55 km
after day 10, 28 levels

No None Yang and Tallapragada
(2018)b

a Using the OSTIA analysis (Good et al. 2020).
b Also see https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php.
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is 0.58 3 0.58, although the original grid spacing of each
model is different (third column from the left in Table 2).
Their initialization (i.e., 0 lead time) and forecasts at lead
times of 1–10 days were used in this study. The models are
initialized twice per day at 0000 and 1200 UTC every day,
except for Navy-ESPC, which is initialized once per day at
1200 UTC, four days per week (Saturday, Sunday, Monday,
and Tuesday). These discrepancies do not discernibly affect
the results to be shown in section 3.

ECCC, ECMWF, and Navy-ESPC are atmosphere–ice–ocean
coupled models; the others are uncoupled atmospheric-only
models. CMA, CPTEC, and NCEP used SST from the NCEP
analysis as their initial and lower boundary conditions. ECCC,
JMA, and Navy-ESPC used SST from their own respective daily
ocean analysis systems that assimilated observations from satel-
lites, ships, and buoys. ECMWF and KMA used SST from the
Operational Sea Surface Temperature and Sea Ice Analysis
(Donlon et al. 2012). In uncoupled atmosphere-only model fore-
casts, SST fields persisted through the course of prediction. Even
in uncoupled forecasts, it is useful to assess errors in SST fields
as they may contribute to errors in other surface variables
(e.g., temperature, humidity, winds). Only the three coupled
models (ECCC, ECMWF, and Navy-ESPC) include dynamic
sea ice. How sea ice prediction may affect errors in other pre-
dicted variables is not assessed in this study. Eight models are
far fewer than commonly used sizes of operational ensemble
forecasts (Leutbecher 2019). Model-averaged errors over the
eight models were nevertheless calculated.

The saildrone observations applicable to numerical weather
prediction were made available to prediction centers in real
time via the Global Telecommunication System (GTS). Certain
variables (e.g., p, T, SST) were assimilated into some of the
forecast systems (5th column in Table 2). However, it is difficult
to assess the impact the saildrone observations may have had
on initial conditions of the models that included them in their
data assimilation. Operational data assimilation receives obser-
vations from many sources (in situ and remote) and these
observations are weighted differently when they are assimilated.
Some of the received observations may be rejected for various
reasons. Initial conditions may deviate substantially from obser-
vations even when observations are included in operational
data assimilation. There are several methods that can quantita-
tively demonstrate the impact of the observations on forecast
(e.g., Baker and Daley 2000; Errico 2007; Cardinali 2009; Zhu
and Gelaro 2008; Lorenc and Marriot 2014), which are beyond
the scope of this study. We, however, pay attention to discern-
ible differences between forecasts by models that assimilated
saildrone observations and those that did not.

To compare the saildrone observations with the model output,
a 1-h average of the saildrone observations centered on a given
synoptic hour (e.g., 1200 UTC) was made. Model output from
that synoptic hour was linearly interpolated to a saildrone loca-
tion at the same synoptic hour from the four model grid points
closest to that location. The hourly average of the saildrone
observations was then compared with the interpolated model
forecast at the saildrone location. In this sense, at a given lead
time, comparisons between saildrone observations and NWP
products are at the same (saildrone) location at that time. This

linear interpolation works reasonably well (section 3). We com-
pare the six variables observed by the saildrones (p measured at
0.2 m, T and RH at 2 m, u and y at 5 m, and SST at20.5 m) with
the model output of sea level p, 2-m T, 2-m dewpoint, 10-m u
and y, and sea surface skin temperature, respectively.

Model dewpoint or specific humidity was converted to RH
using the Clausius–Claperon relationship. The model 10-m winds
were converted to 5 m where saildrone wind observations are,
following the neutral stability approach (Mears et al. 2001) with
the roughness length of 1.52 3 1024 m (Peixoto and Oort 1992).
Preliminary calculations of skin SST based on the observations
from one saildrone using the COARE flux algorithm (Fairall
et al. 2003) indicate that the cool skin and warm layer rarely
differ from observed SST at 20.5 m by more than 0.28C. As will
be shown (section 3), this is much smaller than errors in SST,
predicted or prescribed in most models. Such conversion from
20.5-m temperature to skin temperature requires simultaneous
radiation measurements, which are available from only two of
the four saildrones. For consistency, we decided not to make this
conversion. This does not compromise the main results from this
study.

Once the model outputs were interpolated onto the locations
of the four saildrones, their differences from the observations
(models 2 observations) at each lead time (including day 0)
were considered errors. At a given synoptic hour and lead time,
errors were calculated for each model–saildrone pair. Further
averages of 0000 and 1200 UTC were then made. To illustrate
the error growth, daily errors were summarized into root-mean-
square errors (RMSE) at each lead time, for the entire deploy-
ment period. For each forecast model, its RSME at a lead time
t was calculated as the following:

RMSE t( ) �

������������������������������������∑N
n

∑S
sn

[
P(sn , t) 2 O(sn)]2

NS

2

√√√√√√
, (1)

where n is an index for the saildrones (N = 4), sn is an index for
the data point of each saildrone (S = 120), P represents the fore-
cast, and O represents the saildrone observations. Each data
point corresponds to a specific location along a saildrone track
at a given time (day). Missing data in observations and model
output are less than 2% of the total.

Mean standard deviations are used to measure relative
amplitudes of errors in different variables. Errors of different
variables cannot be directly compared to each other because
of their different natural variability. One option is to normal-
ize the errors using their respective standard deviations. But it
is desirable to know the total values of the errors. The compro-
mise would be to mark observed standard deviations on fig-
ures showing errors in section 3. For this purpose, a proxy of
the mean standard deviation for a given variable at a given
lead time was calculated using the saildrone observations. For
instance, at the lead time of 5 days, observed standard devia-
tions within a running window of 5 days through the entire
deployment period was calculated for each saildrone and then
averaged over the four saildrones. This mean standard devia-
tion includes averaged variability in time within 5 days and
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spatial variability over distances traveled by saildrones within
5 days. It was calculated the same way for all variables and
used as a benchmark to compare forecast errors of different
variables. This approach, however, was not applied to initial
times. Observed standard deviations at initial times were esti-
mated by extrapolation from those at lead times of 1–3 days.

In addition to the general issue of point-to-box comparisons
that applies to all numerical model verification against in situ
observations at fixed locations, there is an additional issue
when observations are from moving platforms. In this study,
predictions are always compared with observations at the
same location along each of the saildrone tracks. Because of
the saildrones’ mobility, such validation locations vary with

forecast lead time. This may introduce extra errors in time
(see the appendix), especially when saildrones move from
locations in a model grid box to those in another. Distances
traveled by the saildrones within 5 and 10 days are summa-
rized in Fig. 2. Even within 5 days, the saildrones could travel
over 50 km, the size of the model grid boxes. The severity of
this issue can be assessed by evaluating the dependence of pre-
diction errors on the distances traveled by the saildrones over
different lead times. We find such dependence of prediction
errors on the saildrone travel distance insignificant (section 3).
We concluded that the possible overestimate of error growth
in time due to the mobility of the saildrones is negligible.

3. Prediction validation

In this section, we present the results from comparing
model forecasts against saildrone observations. We also dis-
cuss issues in calculations of forecast errors related to the
mobility of saildrones as mentioned in the previous section.
We defer possible interpretations of the error behaviors
found in this section to section 4.

Time series of the observed and predicted p, T, and SST are
given in Fig. 3 as examples of two contrasting prediction error
behaviors. Each curve in the figure is an average over four sail-
drone locations at a given time. Model initial conditions for p
match the observations very well with relatively small intermo-
del spread (Fig. 3a). Differences between the observations and
predictions increase but stay smaller than synoptic and intra-
seasonal variations up to approximately day 7 (Figs. 3c). By
day 10, the various models appear to have very little or no
deterministic predictive skill (Fig. 3d). In contrast, for T,

FIG. 2. Probability distributions of saildrone travel distance
within 5 (orange) and 10 (light green) days. Dark green bars mark
overlays of the two.

FIG. 3. Examples of time series in (a)–(d) p, (e)–(h) T, and (i)–(l) SST from saildrone observations (black curves) and models (colored
curves) for lead times of 0 (initial conditions), 5, 7, and 10 days, shown from top to bottom, all averaged over the four saildrone tracks at a
given time. For SST, all model initial conditions are included in (i), while only predictions by the coupled models are included at the fore-
cast lead times in (j)–(l).
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model initial conditions show a considerable intermodel
spread, with deviations from the observations for some models
very large during June and July and smaller the rest of the
period (Fig. 3e). These differences between the observations
and forecasts remain at all forecast lead times (Figs. 3f–h).
Interestingly, errors in SST share similarities to those in T,
with large differences between the observations and model ini-
tial conditions in June and July (Fig. 3i). Systems (CMA,
CPTEC) with the largest errors in initial SST also show the
largest T prediction errors at the lead time of 10 days (Fig. 3h).
Coupled models (ECCC, ECMWF, Navy ESPC) show rela-
tively large forecast errors in SST (Figs. 3j–l) in the same
months of large forecast errors in T, suggesting these forecast
errors are related. Note that the coupled models are among
the systems with the smallest T error at day 10 (Fig. 3h).

Prediction errors (model minus observation) perceived
from Fig. 3 are quantified in Fig. 4 where their amplitudes
(averaged over four saildrone locations at a given time) are
compared against observed standard deviations (see section 2
for their calculations). As suggested by Fig. 3, errors in p grow
in all months (Fig. 4, left column), whereas errors in T and
SST remain obviously larger in June and July than the rest of
the period from the initial time to day 10 (Fig. 4, center and
right columns). On synoptic time scales, forecast errors in p
from all models appear to fluctuate together; this is not
observed for errors in T. RMS differences (RMSD) in forecast
errors (normalized by observed standard deviations within a
10-day running window so the results for p and T can be com-
pared, see section 2) between ECMWF as a reference and
each of the other models were calculated at the lead time of
10 days over the entire period. The RMSD ranges from 1.14 to

1.60 for p and from 0.85 to 2.16 for T. This illustrates that
intermodel differences in forecast errors are smaller for p than
T. Errors in SST at the initial time and forecast lead times are
mostly negative (Figs. 4i–l), meaning models underestimated
SST. Possible reasons for this are discussed in section 4d.

The general growth of prediction errors for all variables
included in this study is demonstrated in terms of root-mean-
squared errors (RSMEs) for the entire deployment period
(Fig. 5) without the information of their possible dependence
on the months during the period but also without averaging
errors over the four saildrones [Eq. (1) in section 2]. To make
errors in different variables comparable to each other, standard
deviations calculated using the saildrone observations over the
spans of the forecast lead times (see section 2 for details) are
used as benchmarks to measure the relative amplitudes of the
errors. Several points can be made from Fig. 5. First, there is
discernible gain in prediction skill through multimodel means
(gray line with triangles) for p, u, and y close to 10-day lead
time but not for T and RH. Second, the amplitudes of predic-
tion errors in p are indistinguishable from its observed standard
deviations during the early time of the forecast (,6 days) but
grow rapidly (amplitude increasing by more than three to five
times within 10 days) and become obviously greater than its
observed standard deviations during the later time of the fore-
cast for all models (Fig. 5a). The situation is similar although to
a lesser degree for u and y (Figs. 5c and 5e). In contrast, errors
in T are greater than its observed standard deviations from the
initial time to the end of the forecast period; models (CMA,
CPTEC) with larger initial errors in T suffer from larger pre-
diction errors all the time (Fig. 5b). Errors in RH are consis-
tently large from the initial time to the end of the forecast

FIG. 4. Examples of time series of prediction errors (prediction 2 observation) in (a)–(d) p, (e)–(h) T, and (i)–(l) SST for lead times of
0 (initial conditions), 5, 7, and 10 days, shown from top to bottom, all averaged over the four saildrone tracks at a given time. For SST, all
model initial conditions are included in (i), while only predictions by the coupled models are included at the forecast lead times in (j)–(l).
Horizontal dotted lines indicate one standard deviation of the saildrone observations (see section 2 for information on their calculations).
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period for all models (Fig. 5d). Errors in T and RH grow much
more slowly (less than doubling within 10 days) than p, u, and
y. The connections between initial and forecast errors shown in
Fig. 6 illustrate that models suffering from larger forecast
errors have larger initial errors for T and RH (the right col-
umn), to a much lesser degree for u and y, and not for p at all
(left column). Third, two models (CMA, CPTEC) have the
largest errors in both T and SST, and five models (ECCC,
ECMWF, JMA, KMA, Navy-ESPC) have the smallest errors in
both T and SST (Figs. 5b and 5f). An exception is NCEP, which
has relatively small errors in T but large errors in SST. Initial
errors are larger than prediction errors in T and RH from
Navy-ESPC (Fig. 5b and d) are likely a result of initialization
shock (Mulholland et al. 2015) in these forecasts as they were
initialized from a separate ocean and atmosphere analysis. This
is prone to occur when initial conditions at the sea surface were
prepared through data assimilation that is not fully coupled.
The precise reasons for this large initial error in Navy-ESPC
diagnosed here are currently under investigation.

Before we attempt to further explain the results shown in
Figs. 3–6, we need to address the issues related to the moving
platform as mentioned in the previous sections: Does linear
interpolation from model grid points to a saildrone track work
as well as to a stationary observational site? How much would
spatial variability along a saildrone track contaminate the analy-
sis of prediction error growth? To address the first issue, we

examine the spatial variability in forecast errors of p and T
along the saildrone tracks [dsE(ds, t1) in the appendix]. This is
measured by differences between forecast errors at pairs of sail-
drone locations as a function of their distance, normalized by
their standard deviations for direct comparisons between the
variables. There is no discernable increase of forecast errors
with the distance (not shown). This suggests that the mobility of
the observing platform (saildrones) did not contaminate the
forecast error calculations in any obvious way. We thus are con-
fident that the distance traveled by saildrones over any two
given forecast times within 10 days does not contribute to the
behaviors of prediction errors (the appendix).

We evaluated additional diagnostics to verify that the
results from our forecast validation against observations from
moving platforms are consistent with those against observa-
tions at fixed locations. For this we selected a surface weather
station (ENHE, 65.58N, 2.38E, elevation 1 m) on an offshore
oil production platform in the Heidrun Oil Field off the west
coast of Norway, an oceanic environment similar to that for
the saildrones deployment. Being on the Atlantic side of the
Arctic, this station provides additional information of possible
geographic dependence of our results, which will be discussed
in section 4. Validation of the forecasts against observations
from this station (without SST) over the same period of the
saildrone deployment led to results very similar to those
against the saildrone observations. For example, errors in p

FIG. 5. Prediction errors (RMSEs) as functions of forecast lead time (day) for (a) p, (b) T, (c) u, (d) RH, (e) y, and
(f) SST. Standard deviations calculated using the saildrone observations (see section 2) are denoted by black curves.
Solid color lines with dots are for the coupled models.
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are indistinguishable from its observed standard deviations
(calculated using the station observations the same way as
using the saildrone observations , see section 2) during the
short-range forecast (,6 days) but become distinguishably
greater than the observed standard deviations at the longer
lead time (cf. Figs. 5a and 7a). Errors in T and RH at the sta-
tion can be consistently higher than their observed standard
deviations from the initial time to the end of the forecast
(Figs. 7b and 7d), as seen along the saildrone tracks (Figs. 5b
and 5d), although they are smaller and less spread among the
models than along the saildrone tracks. Among all variables,
errors in RH do not grow much at the station (Fig. 7d) as
seen along the saildrone tracks (Fig. 5d).

Yamagami et al. (2019) validated forecasts of Arctic cyclo-
nes against a global reanalysis product using sea level pres-
sure. They found that forecast errors in central pressure
persistently increase with lead time, as seen in our results
(Fig. 5a). The error growth in our results is roughly from
2 hPa in a 1-day forecast to 7–10 hPa in a 10-day forecast,
which is within the error growth roughly from 3 hPa in a 1-day
forecast to 12–15 hPa in a 6-day forecast found by Yamagami
et al. (2019). Tjernström et al. (2021), using observations from
an icebreaker between Sweden and the North Pole, also found
relatively small initial errors in p and wind speed followed by
their obvious error growth in forecasts in contrast to relatively
large initial errors in T and surface specific humidity without
obvious error growth in forecast. These similarities between
the error behaviors at the fixed locations (the weather station
and model grids) and along tracks of moving platforms (ship,
saildrones) lend us confidence that observations from sail-
drones can be used for validation of NWP products as observa-
tions from fixed locations.

4. Discussion

Results presented in the previous section raise several ques-
tions that are addressed in this section.

a. Are the results presented in section 3 specific to the
limited geographic domain (the Bering, Chukchi, and
Beaufort Seas) and time (summer of 2019) of the
saildrone deployment?

The similarities in the error behaviors found by using the
saildrone observations on the Pacific side of the Arctic and
based on the weather station observations on the Atlantic side
(Figs. 5 and 7) suggest that our results are applicable to a
broad region of the Arctic Ocean. This conclusion is further
supported by results from Køltzow et al. (2019) who used sur-
face observations from land-based weather stations on the
Atlantic side of the Arctic (surrounding the Norwegian Sea) in
winter to validate forecasts by four numerical models. They
found that errors in initial conditions are relatively smaller for
p than T, whereas error growth is greater for p than T, similar
to what is shown in Fig. 7 for boreal summer. These similari-
ties between the results from Køltzow et al. (2019), Tjernström
et al. (2021), and ours suggest that these error behaviors are
independent of the season and locations within the Arctic.
This is, however, not the case for regions outside the Arctic.
To demonstrate this, we took a different approach. We com-
pared ECMWF forecasts of p and SST (similar to T) against
its own analysis as proxies of observations in five different
regions: Northern Hemisphere (NH), Southern Hemisphere
(SH), the tropics (TR), Mediterranean, and the Bering, Chukchi,
and Beaufort Seas (B/C/B Seas). The strong regional dependence
of the error growth is obvious in Fig. 8. Error growth is slowest

FIG. 6. Scatter diagrams of monthly RMSE [using Eq. (1) in section 2 for each month, e.g., S = 30] at lead times of
1–10 days vs initial times for (a) p, (b) T, (c) u, (d) RH, (e) y, and (f) SST. Legends for models, lead times and months
are given at the right. Blue lines mark the 1:1 relationship.
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in the tropics (orange lines) and relatively rapid in the Arctic
(red lines). This may not be surprising given that the atmo-
sphere is more predictable in the tropics than in the Arctic
(Judt 2020).

b. Why do the errors behave differently for
different variables?

The errors behave differently in several ways. (i) Errors of p
and wind are relatively small in the short-range (,6 days)
forecasts but become much greater in the longer forecasts
(Figs. 5 and 7). For T and RH, errors can be large at the initial
time and remain so throughout the forecast period (Figs. 5 and
7; Køltzow et al. 2019). (ii) Models with larger initial errors in
T and RH suffer from larger forecast errors, which is not the
case for p and wind (Fig. 6). (iii) Multimodel means improve
the prediction skill for p, u, and y but not T and RH (Fig. 5).

Forecast errors depend mainly on three factors: errors in initial
conditions, model deficiencies, and the predictability limit of the
natural system. Arctic in situ observations available in real time
for NWP centers to prepare their forecast initial conditions are
extremely sparse. It is thus not surprising to see large initial
errors in T and RH. The relatively small initial errors in p and
wind suggest that their initial conditions depend less on the local
conditions because the spatial scale of their variability is large or
they are constrained over a large scale both horizontally and ver-
tically. This is indeed the case, as measured by differences
between simultaneous observations from different saildrones as a
function of their distance when normalized by their standard
deviation through the deployment period (Fig. 9). The smaller
scatter of p and larger scatter of T as functions of distances

between saildrones suggest that the spatial scales (or correlation
length scales) of p are much larger than those of T. Over the
ocean, T is more influenced by SST than large-scale dynamics,
whereas p is a product of mass in the atmospheric column, which
is closely related to tropospheric temperature. Satellite observa-
tions of radiance or retrieved tropospheric temperature are
assimilated at most NWP centers, which helps with the accuracy
of p in initial conditions. Even though surface winds (u, y) cannot
always be well observed by satellites because of cloudiness, they
are geostrophically constrained by p and surface drag, albeit with
the complications of momentum entrainment across the top of
the atmospheric boundary layer (Stevens et al. 2002). An accu-
rate initial condition in p would help with the accuracy of initial
conditions in winds over the ocean at high latitudes. Near-surface
air temperature is difficult to derive from satellite radiances due
to the sensitivity of low-peaking channels to other factors, such
as land/sea surface temperature and temperatures higher in the
air column. Many operational data assimilation systems are not
able to use the full information content from such channels, and
coupled data assimilation is being developed to improve their
usage (Frolov et al. 2020). As a case in point, global gridded
surface energy flux products may use satellite retrievals for sur-
face wind and humidity, but not for surface air temperature
(Bentamy et al. 2003; Yu andWeller 2007; Tomita et al. 2019).

The very similar amplitudes and timing of errors in p across
all models (e.g., at 7- and 10-day forecasts in Fig. 4), not seen
for T and RH, are intriguing. It suggests that all models
missed the evolution of p in a similar way. An example is
shown in Fig. 10, using the evolution of ECMWF analysis
as proxies to observations (red) and deterministic forecasts

FIG. 7. As in Fig. 5, but using observations from a weather station (ENHE; 65.58N, 2.38E) without SST.
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initialized at 0000 UTC 8 August 2019 (blue). On 9 and 11 August
(Figs. 10b and 10c), the low pressure center developed offshore
Kamchatka Peninsula was well captured by the 1–4-day forecasts.
But the 7-day forecast misplaced a new low center on 15 August
(Fig. 10h). This new low center stayed northeast of Kamchatka
Peninsula through 17 August (Fig. 10j) and disappeared on
18 August, whereas the forecasted low center moved north-
eastward and maintained itself through 18 August (Fig. 10k).
The misplacement of the low centers in the forecast (Figs. 10h–j)
makes forecast errors in p inversely proportional to the observed
p: large negative errors are found where a low center exists in
the forecast but not in observations, and large positive errors
are found where there is a low center in observations but
not in forecasts (Fig. 11a). A comprehensive forecast skill

assessment for p should also include other metrics in addition
to pointwise comparison, such as spatial coherence, which is,
however, unfeasible to accomplish using observations from
moving platforms. The forecast models may suffer from com-
mon deficiencies that prevent their prediction skills from
approaching a longer predictability limit.

c. Are T, SST, and their errors related?

While surface air temperature T is closely related to SST in
both observations and most forecasts (Fig. 12) as a result of air–-
sea interactions in coupled model or SST boundary conditions in
uncoupled models, there are discernable differences in this
T–SST connection between the observations and forecasts. In
the observations, T is lower than SST more often than otherwise,
especially for low SST (Fig. 12i). This is likely a result of a partic-
ular wind regime sampled during the saildrone cruises. In
the Chukchi Sea, the saildrones were following the ice retreat to
the north and winds in July–September are normally toward the
southwest off the ice. This cold air over the warmer sea surface
was reproduced but exaggerated by some models (e.g., Fig. 12h).
Other models were more likely to produce warmer than colder
air over the sea surface at low SST (Figs. 12a,b,g).

The near air–sea equilibrium (e.g., T and SST vary in
tandem) would lead to a possible connection between errors
in T and SST. This has been indicated in Figs. 5b and 5f. Pre-
diction errors in T and SST are connected to different degrees
for different models (Fig. 13). For example, such a connection
is the strongest for CMA, an uncoupled model (Fig. 13a), and
weakest for CPTEC, an uncoupled model (Fig. 13b), and
Navy-ESPC, a coupled model (Fig. 13g). How errors in SST
and T are related may be affected by parameterization
schemes for the atmospheric boundary layer as well as air–sea
coupling in the models.

d. What role do initial conditions play in
prediction errors?

The role of initial conditions in forecast errors in T and RH
is best illustrated in Figs. 5 and 6. In this particular case, the
amplitude of forecast errors in T and RH are directly related
to the magnitude of their initial errors. Models with relatively
large initial errors in T and RH have large errors throughout
the entire 10-day forecast period (CMA and CPTEC for both
T and RH, and NCEP and Navy-ESPC for RH). For these
models, more accurate initial conditions may help reduce
forecast errors in T and RH, at least at the short-range lead
times. This is much less so for forecast errors in p, u, and y.

The quality of initial conditions depends on three factors:
observations, data assimilation algorithms, and forecast mod-
els. Observations may suffer from their sparsity and errors in
measurement. Data assimilation can be compromised by
assumptions made in its algorithm. Even with highly accurate
observations and excellent data assimilation algorithms, the
accuracy of initial conditions can only be as good as what can
be made by a forecast model used in the data assimilation.
It would be interesting to find out how the three factors con-
tribute to the differences between initial errors in p, u, y and
in T, RH. Two uncoupled models (JMA and KMA) suffer

FIG. 8. RMSEs of (top) p and (bottom) SST in the Northern
Hemisphere (NH, green, north of 208N), Southern Hemisphere
(SH, blue, south of 208S), the tropics (TR, orange, 208S–208N),
Mediterranean (purple, 318–468N, 68W–368E), and the Bering,
Chukchi, and Beaufort Seas (B/C/B Seas, red, 508–808N,
1708E–1508W) calculated using ECMWF forecasts and analysis.
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relatively small initial and prediction errors in T and RH as
the coupled models (Figs. 5b and 5d). These two uncoupled
models are initialized using their own data assimilation
systems (section 2). The other two coupled models (CMA,
CPTEC) that use initial conditions from an analysis prepared
by a different model (NCEP) both suffer relatively large ini-
tial and prediction errors in T, RH (CPTEC only), and SST
(Figs. 5b,d,f). The NCEP model is an interesting hybrid case. It is
uncoupled and suffers from relatively large initial and prediction
errors in SST and RH (Figs. 5f and 5d), but not in T (Fig. 5b).

Satellite retrievals of SST are available, even though in the
Arctic they suffer from serious issues (e.g., Castro et al. 2016;
Banzon et al. 2020), whereas satellite retrieval of T is not. This
and the apparent connection between errors in T and SST in ini-
tial conditions and in prediction (Fig. 13) for most models point
to the importance of initial conditions in SST (which serve as
lower boundary conditions for uncoupled models). The evolution
of errors in SST along the saildrone tracks is very similar to that
in T (Fig. 4, right column): For certain models, they are large in
late June through July and smaller in the rest of the deployment
period from the initial time to forecast lead time of 10 days. This
is so as errors of coupled model predictions (Fig. 4) and
uncoupled model lower boundary conditions (not shown). This
suggests that initial and forecast errors cannot be completely
attributed to model biases.

The large initial errors in SST during June and July may be
related to the unusual warming in 2019 in the Bering, Chukchi,
and Beaufort Seas (SST anomalies$ 58C) that was not captured
by model initialization. This led to larger SST errors, and hence
larger T errors, over warmer water (Figs. 11b and 11c). In June
and July, the saildrone tracks ran through areas of very large pos-
itive SST anomalies (.48C), whereas in August and September,

they were more spread and some of them were in areas of rela-
tively small SST anomalies (Fig. 14a, thin red lines). The SST
anomalies averaged over the saildrone tracks (Fig. 14a, thick red
line) were 4.428, 5.558, 2.648, and 3.558C for June, July, August,
and September, respectively. Models that did not fully capture
the unusual surface warming could suffer large initial errors in
June and July along the saildrone tracks.

Given the limited observations of SST in the Arctic, some
models manage to prepare their SST initial conditions much
better than others (Figs. 3i, 5f, and 11c). This speaks to the
importance of data assimilation. Data assimilation matters in
several ways: whether data assimilation is fully or partially
coupled or not coupled at all, and whether data assimilation is
done using the same model for prediction. Another critical
issue is how many observations are made available in real
time to operational data assimilation. To illustrate this, we
compare saildrone observations of SST to the OISST v2.1
product (Banzon et al. 2020) along the saildrone tracks. In
situ observations of SST, including those from our saildrones
in 2019, were used to correct satellite retrievals in OISST
v2.1. This made the OISST v2.1 SST match the saildrone
observations (blue lines in Fig. 14b) very well in general, with
their differences mostly less than 28C (teal lines in Fig. 14b).
The monthly RMSE along individual saildrone tracks range
from 0.608 to 1.648C, with track averages of 1.008, 0,968, 0.808,
and 0.378C for June, July, August, and September, respec-
tively. These differences are much smaller than those between
the saildrone observations and initial conditions of the models,
which are 18–4.68C (Fig. 5f).

Because all in situ observations used in OISST v2.1 were
not available in real time through GTS, OISST v2.1 is not a
real-time product that can be used by NWP centers to prepare

FIG. 9. Scatter diagram of differences between simultaneous observations from each pair of saildrones and
their distances for (a) p and (b) T, normalized by their respective standard deviations observed through the
entire deployment.
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FIG. 10. Evolution of p from the ECMWF analysis as a proxy of observations (red contours) at 0000 UTC each day from 8 to 18 Aug 2019
and its forecast by ECMWF initialized at 0000 UTC 8 Aug (blue contours).
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their initial conditions. Mean errors in SST in model initial con-
ditions and OISST v2.1 were calculated along each saildrone
track, then averaged over all tracks, and averaged over the cou-
pled and uncoupled models, respectively. They are apparently
the largest for the uncoupled models (Fig. 11c; red line in
Fig. 14c) and relatively smaller for the coupled models (purple)
and OISST v2.1 (green). For the entire saildrone deployment
period, the mean errors (RMSE) are 2.088C (1.968C) for the
uncoupled models, 0.438C (1.38C) for the coupled models, and
0.338C (0.838C) for OISST v2.1. If OISST v2.1 was a real-time
product and available to NWP, then it is possible that errors in
SST would be substantially reduced in the initial conditions.
This could possibly further reduce prediction errors in SST of
the coupled models and in T of all models.

5. Summary and conclusions

This study has used in situ observations from saildrones to
evaluate numerical weather prediction (NWP) products in the

Arctic during June–September 2019. While NWP validations in
the Arctic have been done previously (Francis 2002; Atkinson
and Gajewski 2002; Bauer et al. 2016; Jung and Matsueda 2016;
Lawrence et al. 2019; Køltzow et al. 2019), ours focused on the
air–sea interface in the Bering, Chukchi, and Beaufort Seas,
which, to the best of our knowledge, had rarely been done
before mainly because few, if any, observations of all key sur-
face variables (T, RH, p, u, y, SST) were available there. This
is also the first attempt of using observations from remotely
controlled uncrewed surface vehicles (USVs) to evaluate
NWP products in the Arctic. This study discussed complica-
tions of using observations from mobile platforms in NWP val-
idation, and demonstrated that such complications do not
hinder the utility of observations from USVs in such valida-
tion, at least up to a forecast time of 10 days. Results from this
study demonstrate that in a data-sparse or data-void region,
limited observations from USVs can lead to useful information
for NWP that is otherwise unavailable.

FIG. 11. Scatter diagram of (a) prediction errors in p vs observed p at the lead time of 10 days, (b) initial errors in T vs observed SST, and
(c) initial errors in SST vs observed SST. Triangles mark the uncoupled models, dots mark the coupled models.

FIG. 12. Scatter diagram of T vs SST from the models and observations and their correlations squared (r2). For model output, the colors
denote forecast lead times.
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The main results from this study and their implications are
as follows:

1) Prediction errors behave differently for p, u, y and T, RH
when measured against their respective observed standard
deviations. For p, u, y, errors are small (indistinguishable
from their observed standard deviations) at initial and short
prediction lead times (,6 days) but they grow and become
much larger than their observed standard deviations at lon-
ger lead times. All models diagnosed in this study perform
similarly in this regard. Non-weighted multimodel means
outperform all individual models, especially at longer predic-
tion lead time (.6 days). In contrast, for T and RH, sizes of
forecast errors are determined by initial errors that are larger
than their observed standard deviations. Non-weighted mul-
timodel means do not outperform all individual models.
There are several possible interpretations for the different
error behaviors. They include dominant large-scale variabil-
ity and constraints for p, u, y; small-scale variability of T and
RH; and differences in their initialization.

2) The prediction error behaviors found in the Bering, Chukchi,
and Beaufort Seas in summer can also be found in other
parts of the Arctic in other seasons (Køltzow et al. 2019;
Tjernström et al. 2021), but they are in sharp contrast to
error behaviors in regions outside the Arctic, especially the
tropics. It is known that the predictability limit varies with
region (Judt 2020). Physical processes pertaining to the per-
formance of model parameterization schemes may also
depend on region.

3) The relatively larger errors in T and RH at the initial time
and their persistence through 10-day forecasts strongly
suggest that improving their initial conditions may reduce
their prediction errors. The close connection between T

and SST and between their errors at the initial time indi-
cates that improving initial conditions of SST would tre-
mendously benefit prediction of T and perhaps also RH
even for short-range forecasts. Factors that would contrib-
ute to improved initial conditions include more in situ
observations, their real-time availability to prediction cen-
ters, and better data assimilation capabilities. Satellite
observations are and will continue to be the main sources
of observations of SST over the Arctic Ocean. More in
situ observations of SST (Castro et al. 2016; Banzon et al.
2020) are needed to help improve satellite retrievals of
SST and further benefit NWP initial conditions.

This study can be expanded in several ways, given the confi-
dence we have gained from it that saildrone observations are
useful in the validation of NWP products. Saildrone observa-
tions in the Arctic Seas in the past and future can be used to
confirm the results from this study. The potential benefits of an
expanded campaign with a greater number of saildrones or
other types of USVs covering a larger area can be beneficial.
Comparisons between USV observations and NWP products
can be extended beyond 10 days using ensemble forecasts. Simi-
lar comparisons can be made between USV observations and
global reanalysis products. USV observations from other
remote oceanic regions with sparse or no in situ observations at
the sea surface can also be used in NWP validation.

In addition to improving initial conditions and improving
model parameterizations, the extent to which predictability
might be different for p, u, y and T, RH is yet to be determined.
It is also necessary to determine how much room there is for
improvement of Arctic prediction within the predictability limit
of the dynamic system (Lorenz 1982; Krishnamurthy 2019;
Shen et al. 2021). Based on the recent study of Judt (2020), the

FIG. 13. Scatter diagrams of model errors in SST and T. Colors denote forecast lead times.
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predictability of the Arctic is different from other regions of
the world. Predictability near the surface might be different
from that aloft (Judt 2018).

The Arctic warming in 2019 took place under unusual con-
ditions. North of 608N for October 2018–August 2019 the
annual land surface air temperature was the second warmest
since 1900 (Overland et al. 2019). The early onset of melting
in the spring of 2019 led to one of the lowest sea ice extents
on record in the Bering and Chukchi Seas, accompanied by
the second highest SSTs on record in August 2019 (Meier et al.
2019; Timmermans and Ladd 2019). These unusual conditions
may make Arctic predictions more difficult than before.
Given the recent accelerated warming in the Arctic, numeri-
cal predictions of the Arctic may continue to suffer from large

errors if their initial conditions do not capture the large SST
anomalies. Additional in situ observations have been proven
beneficial to Arctic prediction (Inoue 2020). This calls for
more in situ observations in the Arctic to be made available
in real time and more efforts to fully incorporate in situ obser-
vations in preparation of initial conditions of numerical
predictions.
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APPENDIX

Using Observations from Mobile Platforms to
Measure Prediction Error Increment in Time

When observations used to validate NWP products are
from a mobile platform, biases can be introduced to the
measured prediction error increment over time because of
the spatial variability over a distance traveled by the plat-
form during that time. This is explained in the following.

FIG. 14. (a) Daily SST climatology (1982–2010) (black) and
anomalies (red) along each saildrone track (thin lines) and their
average (thick) based on OISST v2.1. (b) Time series of SST
observed by each saildrone (blue) and difference between OISST
v2.1 and saildrone observations (teal) along each saildrone track
(thin) and their averages (thick). (c) Deviations of OISST v2.1
(green), mean initial SST error for coupled models (purple curve),
and uncoupled models (red) from saildrone observations averaged
over the four tracks at a given time.
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Let the forecast error be

E(s, t) � P(s, t) 2 O(s, t), (A1)

where s represents location, t is time, P is the forecast, and
O is the observations. The error increment at a fixed loca-
tion s2 over a time period dt = t2 2 t1 is

dtE(s2, dt) � E(s2, t2) 2 E(s2, t1): (A2)

For a mobile platform, from time t1 to t2, its location
would change from s1 to s2. So the error increment from
time t1 to t2 measured at location s2 is

dE(s2, dt) � E(s2, t2) 2 E(s1, t1)
� [E(s2, t2) 2 E(s2, t1)] 1 [E(s2, t1) 2 E(s1, t1)]
� dtE(s2, dt) 1 dsE(ds, t1), (A3)

where dtE(s2, dt) is the intended measure of the error incre-
ment in time [Eq. (A2)], and dsE(ds, t1) = E(s2, t1) 2 E(s1, t1)
measures the spatial variability at t1 over the distance ds =
s2 2 s1 traveled by the mobile platform during dt. The practi-
cally measured error increment dE(s2, dt) can be taken as a
close approximation of the intended error increment in time
dtE(s2, dt) only if dsE(ds, t1) is negligibly small.

REFERENCES

Atkinson, D. E., and K. Gajewski, 2002: High-resolution estimation
of summer surface air temperature in the Canadian Arctic
Archipelago. J. Climate, 15, 3601–3614, https://doi.org/10.1175/
1520-0442(2002)015,3601:HREOSS.2.0.CO;2.

Baker, N. L., and R. Daley, 2000: Observation and background
adjoint sensitivity in the adaptive observation-targeting
problem. Quart. J. Roy. Meteor. Soc., 126, 1431–1454, https://
doi.org/10.1002/qj.49712656511.

Banzon, V., T. M. Smith, M. Steele, B. Huang, and H.-M. Zhang,
2020: Improved estimation of proxy sea surface temperature
in the Arctic. J. Atmos. Oceanic Technol., 37, 341–349,
https://doi.org/10.1175/JTECH-D-19-0177.1.

Barton, N., and Coauthors, 2020: The Navy’s Earth System Predic-
tion Capability: A new global coupled atmosphere-ocean-sea
ice prediction system designed for daily to subseasonal fore-
casting. Earth Space Sci., 7, e2020EA001199, https://doi.org/10.
1029/2020EA001199.

Bauer, P., L. Magnusson, J. N. Thépaut, and T. M. Hamill, 2016:
Aspects of ECMWF model performance in polar areas.
Quart. J. Roy. Meteor. Soc., 142, 583–596, https://doi.org/10.
1002/qj.2449.

Beesley, J. A., C. S. Bretherton, C. Jakob, E. L. Andreas,
J. M. Intrieri, and T. A. Uttal, 2000: A comparison of
cloud and boundary layer variables in the ECMWF fore-
cast model with observations at Surface Heat Budget of
the Arctic Ocean (SHEBA) ice camp. J. Geophys. Res.,
105, 12 337–12 349, https://doi.org/10.1029/2000JD900079.

Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan,
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Neelin, 2002: Entrainment, Rayleigh friction, and boundary
layer winds over the tropical Pacific. J. Climate, 15, 30–44,
https://doi.org/10.1175/1520-0442(2002)015,0030:ERFABL.
2.0.CO;2.

Sutton, A. J., N. L. Williams, and B. Tilbrook, 2021: Constraining
Southern Ocean CO2 flux uncertainty using uncrewed surface

vehicle observations. Geophys. Res. Lett., 48, e2020GL091748,
https://doi.org/10.1029/2020GL091748.

Swinbank, R., and Coauthors, 2016: The TIGGE project and its
achievements. Bull. Amer. Meteor. Soc., 97, 49–67, https://doi.
org/10.1175/BAMS-D-13-00191.1.

Timmermans, M.-L., and C. Ladd, 2019: Sea surface temperature.
NOAA Arctic Report Card, https://arctic.noaa.gov/Report-
Card/Report-Card-2019/ArtMID/7916/ArticleID/840/Sea-
Surface-Temperature.

Tjernström, M., G. Svensson, L. Magnusson, I. M. Brooks, J.
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